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ABSTRACT

Background: Kaposi's sarcoma (KS) is a vascular 

tumour driven by the human herpesvirus 8 (HHV8). 

KS is the most prevalent HIV/AIDS associated 

cancer in the world and the second most prevalent 

cancer in Zambia, with 16% incidence and 15% 

mortality. Data suggests that HHV8 promotes KS 

tumorigenesis through inhibition of apoptosis by 

HHV8-encoded microRNAs. Indeed, miR-155-5p 

has been shown to promote tumour progression and 

inhibit expression of pro-apoptotic caspase-3 in 

several tumours. This study, therefore, aims to 

investigate the association between miR-155-5p and 

caspase-3 in KS.

Method: An analytical cross-sectional approach 

was used to compare miR-155-5p and caspase-3 

mRNA and protein expression in KS tissues versus 

a d j a c e n t  c o n t r o l s  u s i n g  RT- P C R  a n d  

immunohistochemistry, respectively. Comparison 

of miR-155-5p and caspase-3 expression levels was 

done using the Wilcoxon rank-sum test while 

Spearman's rank was used to test for correlation.

Results: No significant difference was observed 

between miR-155-5p (p= 0.39) and caspase-3 

mRNA expression (p = 0.67) in KS vs normal 

controls, however, there was a significant negative 

correlation between miR-155-5p and caspase-3 

mRNA in KS tissues (p = 0.01; rho = -0.85). 

Furthermore, there was no significant difference in 

caspase-3 protein in KS vs normal controls (p = 

0.18). Importantly, a significant correlation between 

miR-155-5p and viral load in KS tissues was 

observed (p = 0.05; rho = 0.81). Conclusion: This 

suggests a potential inverse relationship between 

miR-155-5p and caspase-3 mRNA in KS. 

Additionally, miR-155-5p expression may be 

regulated by HIV viral load, however, the nature of 

this regulation remains to be investigated.

INTRODUCTION

Kaposi's sarcoma (KS) is a vascular tumour of 

endothelial origin that usually presents as purple, red 
1

or brown lesions on the skin or mucosal surfaces.   It 

can also develop in internal organs of the body, 
2

including lymph nodes, lungs, or the digestive tract.   

Epidemiologically, KS can be stratified into (i) 

classic KS in older men, (ii) endemic KS in younger 

African men and children, (iii) iatrogenic KS in 
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immunocompromised individuals for example 

organ transplant patients or those under 

chemotherapeutic interventions, and (iv) epidemic 
3,4HIV/AIDS associated KS.   Endemic KS in 

adolescents and adults is aggressive and presents 

with large invasive skin lesions while endemic KS 

in children predominantly affects the lymphatic 
5

system.   There is quite an overlap in the 

clinicopathology of paediatric endemic and 

epidemic KS although epidemic KS tends to also 

show aggressive disease progression, immune 
6

reconstitution and inflammatory syndrome.  

Regardless of their epidemiology, all KS types are 
known to be driven by the Human Herpesvirus type 

7
8 (HHV8).  Current data shows a 5%-20% global 
infection rate with HHV8 with the highest 

8
prevalence in sub-Saharan Africa.  Regionally, the 
seroprevalence of HHV8 is estimated to be 16% in 

9 10
China , 6.8% in Qatar  and from 10.4 % to 48.3% in 

11,12
parts of Sub-Saharan Africa.   It is two to three 
times more common in males and is more prevalent 

13
in homosexual communities in endemic regions.   
Transmission of HHV8 occurs by continued, 

14, 15, 16
substantial exchange of saliva.  This double-
stranded lymphotropic DNA virus establishes 
latency in the host for a lifetime and undergoes lytic 
replication in blood vessels, skin and soft tissue 
under favourable conditions such as malnutrition 

1 3
a n d  i m m u n e  d e f i c i e n c y .  I n d e e d ,  
immunocompromised individuals are at a greater 
risk of KS, making it the most common HIV-
associated cancer in the world, and the third most 
frequently diagnosed cancer amongst men in sub-

17,18
Saharan Africa.   In HIV positive patients, T-cell 
suppression and HHV8 replication are required for 
KS tumorigenesis and HHV8 polymerase inhibitors 
can curtail tumour progression but have no impact 

19
on existing skin lesions.  Interestingly, T-cell 
suppression is most commonly observed in HIV-

20
related and iatrogenic KS but less so in classic KS , 
which suggests that different molecular 
mechanisms are involved in different KS subtypes. 
Despite a tremendous reduction in incidence and 
mortality of HIV-associated KS due to the 
introduction of antiretroviral therapy (ART) for 

21,22
HIV , KS remains a highly prevalent malignancy 
and its prevalence in sero-positive HIV patients 
compared to iatrogenic HIV-negative patients may 
imply that HIV impacts the immune system in a 
more profound manner giving rise to higher 
susceptibility to KS. Together, this raises the 
possibility that the molecular mechanisms at play in 
these KS variants require more investigation to 
identify key drivers of KS and potentially design 
targeted therapies for improved prognostic 
outcomes.

In resource-limited settings, diagnosis of KS is 
usually clinical, based on the presence of cutaneous 
or mucosal lesions which may be mimicked by other 

2.3non-KS lesions.   In Zambia, suspected KS patients 
are referred to and present themselves to a well-
established Dermatology and Venereology Division 
for diagnosis, mainly through clinical features and 
h i s t o l o g i c a l  c o n f i r m a t i o n  o r  

24immunohistochemistry.  The current gold standard 
of cancer diagnosis is the histological examination 
of tissue, obtained either by radiologically guided 
biopsy or surgical excision, which are both invasive 

23and expensive.   Therefore, there is still a need for 
other diagnostic and screening tools for early 
diagnosis as well as potential biomarkers that may 
be amenable to therapy. Indeed, delayed diagnosis, 
arising from a lack of reliable diagnostic assays for 
the detection of latent or early-stage diseases, has 
partly resulted in the relatively high disease 
morbidity and mortality in sub-Saharan African 

23countries like Zambia.  To this end, this study 
focuses on microRNAs (miRNAs), which have been 
increasingly identified as reliable biomarkers for the 

25early detection of multiple pathologies.

MiRNAs are involved in highly regulated processes, 
such as proliferation, differentiation, apoptosis, and 
metabolic processes, and they are found in serum, 
plasma, and other body fluids that have a stable form 

26to protect them from  endogenous RNase activity.   
MiRNAs can also stably exist in skeletal muscles, 
heart muscles, adipose tissues, B-cells and other 

27tissues of the body.  As such, miRNAs have been 
intensively investigated in the past decade as 
possible biomarkers and therapeutic targets of 
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different types of cancers through liquid biopsies 
and serve as disease detection, progression, and 
other monitoring tools with rapid and non-invasive 

28
ease.  The sensitivity and accessibility of 
circulating microRNA have put them at an 
advantage as potential diagnostic biomarkers of 

29 30
cancers  such as melanoma  and non-small cell 

31
lung cancer. The success of circulating 
microRNAs in disease monitoring is underscored 
by the substantial increase in biomarker 
identification and use for early detection, 
progression and treatment of HIV-associated 
malignancies by the WHO in collaboration with 
research institutions such as the National Cancer 

32
Institute.   HHV8-encoded miRNAs are known to 
produce multiple oncogenic proteins that 
downregulate tumour suppressors while activating 
signalling pathways that promote cancer 

13
development and progression.  In KS, HHV8-
encoded miRNAs have been shown to 
downregulate caspase-3 mRNA expression, which 

33
is an important mediator of apoptosis.  

Of interest to this study is miR-155-5p, whose 
overexpression has been observed in several 

34 35,36
cancers, such as breast cancer , lung cancer , 

3 7
glioma , B-cell lymphoma and chronic 

38lymphocytic leukemia , and oral squamous cell 
39carcinoma  suggesting a potential role in the 

tumorigenesis of these cancers. Interestingly, 
studies have reported that inhibition of miR-155-5p 
promotes apoptosis of cancer cells by inducing 

40,41caspase-3 protein activation.  Whether there is an 
association between miR-155-5p and caspase-3 
mRNA expression in KS tumours is currently 
unknown. Investigating the expression patterns of 
both miR-155-5p and caspase-3 would provide 
some insight into the molecular drivers of KS and 
hence therapeutic targets as well as identify 
microRNAs as potential diagnostic markers of KS. 
The current study, therefore, investigated the 
expression and correlation of miR-155-5p and 
caspase-3 mRNA in KS tumours.

 

METHODS

Study Design and Participants

This was a cross-sectional analytical study 
conducted at the University Teaching Hospital in 
Lusaka, Zambia from May to October 2023. Due to 
low numbers of willing participants during the data 
collecting period, convenience sampling was done 
to recruit patients who were newly diagnosed with 
KS.  theoretical change in miR-155-5p 
expression of 7.12 (SD ± 2.32) copies per cell in 
cancerous tissues and that of 3.20 (SD ± 2.90) copies 
per cell in normal adjacent tissues sample size was 
calculated using a two independent mean formula of 

2
n  =2 (Z +Z / ES)  where ES (Effect size), n  i 1-α/2 1-β i

(Sample size for one group), α (Significance level at 
95 %), and β (Power at 80%). The effect size was 
calculated using the formula ES= |µ1-µ2|/σ where µ  1

stands for mean for the first group (normal adjacent 
tissues), µ stands for mean for the second group 2  

(cancerous tissues) and σ (Standard deviation). The 
calculated total sample size was 8, thus 16 tissues (8 
cancerous tissues and 8 adjacent normal tissues). 
However, the study recruited 9 participants (9 
cancerous tissues and 9 adjacent normal tissues).  
All study participants were 18 years of age or older 
as they were recruited from an adult outpatient clinic 
and were also chemotherapy/radiotherapy-naïve at 
time of sample collection. During recruitment, a 
study questionnaire was used to obtain consenting 
participants' demographic information, including 
age and gender. Clinical information including KS 
morphotype, HIV status, CD4 counts, HIV viral 
loads, and comorbid conditions were also obtained. 
Before enrollment into the study, the participants 
gave written informed consent which also permitted 
the investigators to obtain an additional KS tissue 
biopsy for the study. The study procedures were 
approved by both the National Health Research 
Authority (NHRA) of Zambia (Ref. No. 
NHREB0009/27/03/2023) and The University of 
Zambia Research Ethics Committee (UNZABREC) 
(Ref. No. 3752-2023). 

Immunohistochemistry

A 5mm formalin-fixed and paraffin-embedded 
(FFPE) punch biopsy specimen used for the 

Using
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standard histological confirmation of KS was 
subjected to immunohistochemistry for caspase-3 
expression. The FFPE KS tissues were cut into 4µm 
sections and mounted on adhesive slides, then baked 
at 60?  overnight. Deparaffination, hydration, and 
antigen retrieval was done on a semi-automated 
machine (PT Link, Agilent) according to the 
manufacturer's instructions. The slides were then 
rinsed with wash buffer (dilution 1:20), first for 1 
minute and then 5 minutes. Peroxidase activity was 
blocked with hydrogen peroxide (dilution 1:100) in 
methanol for 5 Minutes. The slides were incubated 
overnight at 60°C in a humid chamber with the 
primary antibody, Rabbit anti-caspase-3 antibody 
(dilution 1:2000) (Atlas antibodies, HPA002643, 
Lot: B117459). This was followed by 
incubation with the secondary antibody, 
anti-Rabbit labelled Polymer (Dako, 
EnVision+ System-HRP, Ref: K4003) in 
Tris-buffered saline solution with 5% 
bovine serum albumin.  Colour was then 
deve loped  wi th  a  so lu t ion  of  
diaminobenzidine (DAB). The sections 
were counterstained with haematoxylin.  
After examination of the stained slides, 
scoring was done using the intensity of 
the stains and percentage of stained cells 
(Figure 1). Staining intensity was numerically 
scored as 0 (no staining), 1 (weak), 2 (moderate), and 
3 (strong). The percentage of stained cells was 
numerically classified as 0 (<5%), 1 (5-25%), 2 (26-
50%), 3 (51-75%), and 4 (>75%). The product of 
nuclear staining percentage and staining yielded the 
total staining. To ensure that the results obtained 
were not affected by external factors, the samples 
were processed using batch-made reagents for all the 
samples and an automated machine for 
deparaffination, hydration, and antigen retrieval. As 
much as possible, each replicate was analysed in a 
single session

Quantification of miR-155-5p and caspase-3 
Transcripts

Total RNA was extracted from frozen KS tissue 
samples that were stabilized in RNA later, using All 

 

Prep® DNA/RNA Mini kit (Qiagen) in accordance 
with the manufacturer's instructions. RNA was 
reverse-transcribed using the LunaScript RT Super 
mix kit (Biolabs) in accordance with the 
manufacturer's instructions to generate first-strand 
cDNA. Quantitative real-time PCR was performed 
using the Luna Universal qPCR Master Mix 
(Biolabs) according to the manufacturer's 
instructions. U6 was used as a normalization control 
for miR-155-5p, while GAPDH was used as a 
normalization control for caspase-3 mRNA. 

Primers were purchased from Inqaba Biotechnical 
Industries (Pty) Ltd and the sequences used are 
previously validated primers.  All PCR experiments 
were performed in duplicate. The relative mRNA 
expression was determined using the comparative 

-∆∆Ct
Livak method (2 ). While the standard procedure 
for PCR was strictly adhered to and replicates were 
performed in one session, the involvement of 
different personnel in conducting the PCR runs and 
sample preparation could have an impact on the 
validity of the results.

Data analysis

STATA version 17 was used for all statistical 
analyses, while GraphPad prism 9 was used for 
generating the figures. Baseline characteristics were 
analysed using descriptive statistics. Comparison of 
expression levels of the markers of interest in KS 

The 
sequences of the PCR primers used are presented in 
table 1. 

Table 1. PCR primers used in the study
 

 PRIMER  SEQUENCE  
1

 
miR-155-5p forward

 
5’-ACACTCCAGCTTAATGCTAATCGTGATAG -3’

2
 

miR-155-5p reverse
 

5’-CTCAACTGGTGTCGTGGA-3’

3

 
U6 forward

 
5’-CTCGCTTCGGCAGCACA-3’

4

 

U6 reverse

 

5’-AACGCTTCACGAATTTGCGT-3’

5

 

CASP-3 mRNA forward

 

5’-AGAGGGGATCGTTGTAGAAG -3’, 

6

 

CASP-3 mRNA reverse

 

5’-GTTGCCACCTTTCGGTTAAC-3’

7 GAPDH forward 5’-CACCCTCAAGATTGTCAGC-3’

6 GAPDH reverse 5’-TAAGTCCCTCCACGATGC -3’
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tissue to normal tissue was done using the Wilcoxon 
rank-sum test. We used Spearman's rank correlation 
to determine whether expression of miR-155-5p and 
caspase-3 were correlated. P values <0.05 were 
considered statistically significant.

RESULTS

Participant Demographics

Our study population consisted of more males than 
females, with a median age of 39 years, and the 
majority were HIV positive. Among the HIV 
positive individuals, slightly more than half (55.0 
%) were on ART at time of recruitment. The rest of 
the  basel ine  demographic  and c l in ical  
characteristics are shown in table 2.

Table 2: Demographics of study participants

Analysis of mRNA expression of miR-155-5p and 
caspase 3 in KS tumours versus normal tissues

There was no significant difference (p = 0.39) in the 
expression of miR-155-5p in KS tumours compared 
to adjacent normal skin tissue (figure 1A). 
Additionally, no significant difference (p = 0.67) 
was observed in mRNA copies of Caspase-3 in KS 
tumours compared to the normal adjacent tissue 
(figure 1B).

Characteristics  
Values 

 
Gender, Male n (%)  6 (66.70%)

Gender, Females n (%)  3 (33.30%)

Median Age (years)  39 [31-57]

KS HIV positive  6 (66.70%)

KS HIV negative  3(33.30%)

HIV infection duration, median (months)
 

3[1-36]
 

On ART
 

5 (55.50%)

ART treatment duration, median (months)
 

3[1-36]
 

CD4 Count (Cell/µl), median (IQR)
 

222 [132-507]

HIV Viral Load (Copies/ml), median (IQR)
 

0 [0-469]

Figure 1. Expression of: A) miR-155-5p; and B) 
Caspase-3 mRNA in KS tumours and adjacent normal 
tissue. miR-155-5p expression was normalized against 
U6, while GAPDH was used as a normalization control 

-∆∆Ctfor Caspase 3 mRNA using 2  (*p<0.05), n=2.

Caspase 3 and miR-155-5p mRNA expression are 
negatively correlated in KS tissue

To further investigate the association between 
expression of miR-155-5p and caspase-3 mRNA in 
KS and normal adjacent tissue, spearman 
correlation was performed and a statistically 
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Figure 2: Correlation of miR-155-5p expression and 
Caspase-3 mRNA expression in KS tissues (A) and 
Normal adjacent tissues (B).  A Spearman correlation 
was done to compare the expression of miR-155-5p and 
Caspase 3 mRNA in KS tissues and Normal tissues. The 
graphs indicate mean expression of miR-155-5p and 
Caspase 3 mRNA normalized to U6 and GAPDH 

-∆∆Ctrespectively using 2  (*p < 0.05), n=2.

significant negative correlation (p = 0.01; rho = -
0.85) between mRNA levels of Caspase-3 and miR-
155-5p in KS tumours observed (figure 2A). 
Interestingly, no significant correlation (p = 0.64; 
rho = -0.18) was seen in the normal adjacent tissues 
(figure 2B). 

Protein expression of Caspase-3 in KS tumours 

versus normal adjacent controls

To investigate the expression of caspase-3 protein in 

K S  v s  n o r m a l  a d j a c e n t  t i s s u e ,  

immunohistochemistry was performed. A higher 

expression of caspase-3 was observed in KS tissues 

compared to normal tissue; however, this was not 

statistically significant (figure 3). 

Figure 3: Expression of Caspase-3 protein. A, Normal tissue 
(1); Caspase -3 expression demonstrating less than 50% staining 
(*), X20 mag. Normal tissue (2); Caspase-3 expression with few 
cells staining, X40 mag. KS tissue (1); High expression of 
caspase-3, greater than 50%, in tumour cells (*), X20 mag. KS 
tissue (2); demonstrating expression of caspase-3 (greater than 
50%) in tumour cells, X40 mag. Immunohistochemistry with 
caspase-3 antibody. B, Boxplot quantifying mean expression 
of caspase-3 protein. Caspase 3 expression was analysed 
in normal tissues and KS tissues using IHC. Scoring was 
done using the formula: Total score= Staining intensity x % 



nuclear staining. Statistical analysis by student's t-test 
comparing mean expression of caspase-3 protein 
between normal tissue and KS tissues (*p < 0.05).

Expression of miR-155-5p is positively associated 

with HIV viral load

Since a high proportion of our HIV-positive study 

participants were ART-naïve with high viral loads, 

we further assessed whether HIV viral loads were 

correlated with miR-155-5p and caspase-3 mRNA 

levels. We observed a significant positive correlation 

(p = 0.049; rho = 0.81) between miR-155-5p and 

HIV viral loads in HIV-positive KS patients (figure 

4A). On the contrary, an inverse, but statistically 

insignificant negative correlation (p = 0.12; rho = -

0.69) was observed between caspase-3 mRNA levels 

and HIV viral loads (figure 4B). 

Figure 4: Correlation between miR-155-5p expression and HIV 
viral load (A) and correlation between Caspase-3 mRNA and 
HIV viral load (B) (*p < 0.05).  U6 was used as a normalization 

control for miR-155-5p, while GAPDH was used as a 
normalization control for Caspase-3 mRNA (*p < 0.05), n=2.     

DISCUSSION

Expression of caspase-3 protein, an executioner 

caspase of apoptosis, has been observed to be low in 

KS tumors.  MiR-155-5p is known to regulate 

caspase-3 expression in some cancers, but its effect 

in KS tumours remains unknown.  In this study, the 

expressions of miR-155-5p, caspase-3 mRNA, and 

caspase-3 protein in KS tissues and ipsilateral 

normal skin were investigated. No significant 

difference was observed in the expressions of miR-

155-5p and caspase-3 mRNA in KS tumours 

compared to adjacent normal tissue. However, a 

significant negative correlation between miR-155-

5p and caspase-3 mRNA in KS tissues suggests a 

possible regulatory relationship in KS. 

This study also showed no significant correlation 

between miR-155-5p and caspase-3 protein 

expression. This could be due to the small sample 

size, lack of molecular stratification of the KS 

subtypes, and lack of grading of the samples. It is 

interesting to note that although not significantly 

different, KS tissues had higher levels of caspase-3 

protein (figure 3). Increased caspase-3 protein 

expression has been associated with advanced 

pathological stage, larger tumour sizes, and poor 

outcomes in several cancers.  In support of the 

known tumour suppressor role of caspase-3, a study 

observed that down-regulated caspase-3 in KS 

tumours correlated with the inhibition of apoptosis. 

Contrary to these observations and indeed our 

expectations, the results in the current study show a 

higher expression of caspase-3 protein in tumour 

tissues than normal adjacent tissues albeit non-

significant. Other studies have shown that in oral 

tongue squamous cell carcinoma (OTSCC) and 

buccal mucosa squamous cell carcinoma (BMSCC), 

levels of caspase-3 and cleaved caspase-3 were 

significantly higher in tumour tissues than in normal 

adjacent tissues.  A possible explanation could be 

provided by a recent study that suggests that 

caspase-3 plays an important role in the initiation of 
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the HHV8 replication. The study showed that 

proteolytic cleavage of the transcriptional factor Sp3 

under apoptotic conditions resulted in Sp3 C-

terminal fragments with domains that can interact 

with HHV8 to initiate the viral lytic cycle, 

suggesting a transcriptional role of caspase-3. The 

study showed that activation of caspase-3 was 

critical in the proteolytic cleavage of Sp3. The 

observed elevated levels of caspase-3 in KS tissue in 

the current study may be a compensatory mechanism 

as a result of the increased viral lytic cyles

Furthermore, caspases have been shown to 

downregulate type 1 interferons which promotes 

HHV8 lytic replication.  This was shown in a 2022 

study, which suggests that caspases interfere with 

the cytosolic DNA sensor, cGAS, which recognizes 

viral replication DNA and activates systemic 

immune response via induction of type 1 interferon.  

It is important to note that  Type 1 interferon is 

responsible for the expression of several interferon-

stimulated genes that play an important role in 
–inhibiting HIV infection. . 

Other investigations into the potential roles of 

caspase-3 show that Sub lethal activation of caspase-

3 seems to confer cell protective effects in response 

to chemical or  environmental cellular stressors.     

In irradiated normal murine MCF10A breast cells, 

and mouse embryonic fibroblasts, sublethal levels 

caspase-3 have been shown to play a facilitative role 

in persistent DNA damage marked by gamma-

H2AX foci, resulting in genetic instability. 

Interestingly, mice with double knockout caspase-3 

has significantly reduced skin carcinogenesis when 

induced with Dimethylbenz (a) anthracene  + 12-O-

tetradecanoyphobol-13-acetate.  This study showed 

that caspase-3 triggers the translocation of 

endonuclease G from the mitochondria to the 

nucleus, where the Src-STAT3 pathway gets 

phosphorylated, ultimately resulting in oncogenic 

transformation. These data are corroborated by a 

more recent study, which suggests that consistent 

and sublethal activation of caspase-3 plays an 

essential and facilitative role in genetic instability 

and malignant oncogenic transformation in 

. 

mammalian cells and 

  This suggests 

that aside from their well-known pro-apoptotic role, 

caspases have an inherent duality as tumour 

promoter or tumour suppressors. It would be 

interesting to investigate the molecular mechanisms 

that regulate this switch. 

Additionally, since tumour development in KS is 

influenced by the efficiency of the immune system, 

our results may be attributed to ART treatment, 

especially for ART-treated cases.  Caspases have 

also been shown to be overexpressed as a response to 

drugs to enhance cell death so it may be worthwhile 

to investigate the impact of ARTs on caspase-3 

expression in KS. Although only caspase-3, and not 

both caspase-3 and active cleaved caspase-3, was 

stained in the current study, the results may be 

suggestive of caspase-3's activities beyond apoptosis 

in KS. Indeed, the lack of molecular subtyping of our 

samples hinders conclusive remarks and future 

studies would do well to stratify the KS subtypes and 

identify individual pathways that drive tumour 

formation as well as diagnostic and/or therapeutic 

biomarkers. 

This study also investigated whether infection with 

HIV was associated with the expression of miR-155-

5p and caspase-3, as KS is more common in people 

living with HIV. A significant positive correlation 

between miR-155-5p and plasma HIV viral loads 

was observed, however, there was no significant 

correlation between caspase-3 mRNA and plasma 

HIV viral loads. In agreement with these findings, a 

higher expression of miR-155-5p has also been 

observed in HIV-infected individuals.  These 

observations are further supported by previous 

reports that show that the miR-155 family which 

comprises miR-155-5p is significantly highly 

expressed in ART-naive HIV patients with 

progressive disease compared ART-naive long term 

non-progressor HIV positive patients.      Pawar et 

al., demonstrated that knockdown of miR-155 in 

peripheral blood mononuclear cells from these two 

mouse mammary tumour 

virus-polyomavirus middle T antigen (MMTV-

PyMT) breast cancer mouse model. 
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HIV-1 cohorts resulted in significantly increased 

expression of Toll-like receptors (TLRs) and innate 

immune response markers such as interferon 

regulating factors, NF-κB and TNFα. Furthermore, 

the authors showed that Type 1 interferon was 

significantly positively correlated with CD4 count 

and significantly negatively correlated with viral 

load. Together these data suggest that HIV viral load 

regulates miR-155-5p and that this in part results in 

immune dysregulation in KS.

In sum, these data warrant more investigation into 

the role of miR-155-5p with regards to immune 

dysregulation and the role of caspase-3 in this 

signalling axis in different stages and KS subtypes to 

determine its oncogenic potential and expression 

pattern for diagnostic purposes.

CONCLUSION AND LIMITATIONS

In conclusion, our data suggests that caspase-3 

mRNA could be a target of miR-155-5p in KS. The 

strong negative correlation between the two 

suggests that miR-155-5p potentially down 

regulates caspase-3 mRNA. Given the strong 

positive correlation found between HIV and miR-

155-5p, the latter may serve as a possible biomarker 

for Epidemic KS and indeed a strong potential 

therapeutic target for partial immune reconstitution 

in KS patients.  Expression of miR-155-5p may also 

be useful as a prognostic indicator of HIV-associated 

KS as well as a diagnostic biomarker. The high 

expression of caspase-3 protein in KS tissues may 

indicate that, although playing a direct role in 

apoptosis, caspase-3 may have dual roles and act as a 

tumour promoter or confer protective effects on KS 

tissue under sub lethal expression levels. It may also 

suggest caspase-3's activities beyond apoptosis such 

as promoting persistent DNA damage and oncogenic 

transformation and downregulate key immune 

response pathways in KS. While this study used a 

statistically derived sample size, it did not stratify 

the KS samples and future experiments on 

epidemiological subtypes would produce more 

robust data into the molecular mechanism/s that 

drive each specific subtype. This will have the 

potential to be translated into clinical practice for 

subtype specific diagnostic, monitoring and 

prognostic biomarkers. 

It is important to note that the samples used were not 

graded by disease stage, nor were they stratified by 

subtype. Future studies would be better performed in 

graded samples to identify how early the expression 

of miR-155-5p is detected as this would help identify 

its potential as an early diagnostic marker. Due to 

limited laboratory infrastructure, it was not possible 

to perform cell culture assays to verify the role of 

caspase-3 in KS. Furthermore, due to small size of 

cleaved caspase-3, western blotting is required to 

v e r i f y  t h a t  c a s p a s e - 3  i s  a c t i v a t e d .  

Immunohistochemistry alone used antibodies to 

caspase-3 and does not differentiate between the 

native and cleaved forms. Lastly, convenient 

sampling was used because of the study participants' 

insufficiency and the study acknowledges that 

external validity is negatively impacted and larger 

studies that properly represent the population would 

provide more accurate data. Even though the study's 

generalizability would be limited by its small sample 

size and convenient sampling, it nevertheless offers 

insight into the cytogenetic and molecular processes 

of KS. Therefore, it may be better to work with 

bigger sample populations to have conclusive data 

based on the subtypes, ART intervention, viral load 

and disease stage.
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